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Practical Issues in Multiple Imputation

9.1 CHAPTER OVERVIEW

Having outlined the technical and the procedural details of multiple imputation in Chap-
ters 7 and 8, I now address a number of practical issues that can arise in a multiple imputa-
tion analysis. Chapter 7 outlined a few such practical problems (e.g., assessing convergence, 
choosing the number of between-imputation iterations, deciding which variables to include 
in the imputation model), but several others need to be considered. Specifi cally, this chapter 
offers advice on dealing with convergence problems, non-normal data (including nominal 
and ordinal variables), interactive effects, and large multiple-item questionnaire data sets. 
The chapter also gives a brief overview of some alternative imputation algorithms that are 
appropriate for special types of data structures (e.g., mixtures of categorical and continuous 
variables, multilevel data). As you will see, this chapter is relatively applied in nature and is 
geared toward practical recommendations rather than toward technical issues. As an aside, 
many of the issues in this chapter have not been well studied in the methodological litera-
ture, so the practical guidelines that I offer are likely to change as additional methodological 
research accumulates.

9.2 DEALING WITH CONVERGENCE PROBLEMS

The data augmentation algorithm occasionally fails to converge, and it is useful to have some 
strategies for dealing with the problem. To illustrate a convergence problem, reconsider the 
small employee data set that I have been using throughout the book. First, I computed a 
binary employment status variable that denotes whether the company hired each applicant. 
Table 9.1 shows the resulting data. Next, I used the four variables in the table to generate 
5,000 cycles of data augmentation. The fact that a preliminary EM analysis converged in only 
25 iterations suggests that data augmentation should also converge very quickly, but graphi-
cal diagnostics suggested otherwise.
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Figure 9.1 shows the time-series and autocorrelation function plots for the job perfor-
mance mean. Two problems are apparent in the time-series plot: systematic trends that last 
for hundreds of iterations, and implausible parameter values (e.g., many of the simulated 
means fall outside the 1 to 20 score range). The autocorrelation function plot in the bottom 
panel of Figure 9.1 is also problematic and shows strong serial dependencies that persist for 
many cycles. In this example, data augmentation fails to converge because job performance 
scores are completely missing for the subsample of applicants that the company did not hire. 
Consequently, there is insuffi cient data to estimate the association between job performance 
ratings and the binary employment status variable. At fi rst glance, this seems at odds with 
the fact that EM converged after only 25 iterations. However, EM’s behavior is deceptive be-
cause alternate starting values produce a completely different solution. In reality, there is no 
way to identify a single set of parameter values that are most likely to have produced the 
observed data.

Convergence problems such as those in Figure 9.1 often occur because there is insuffi -
cient data to estimate certain parameters. In some situations, the lack of data results from 
including too many variables in the imputation phase. For example, when the number of 
variables exceeds the number of cases, the data contain linear dependencies that cause math-
ematical diffi culties for regression-based imputation. Because missing values reduce the 
amount of information in a data set, convergence problems can occur even when the number 
of variables is much smaller than the number of cases. A peculiar missing data pattern can also 
lead to estimation diffi culties and convergence failures. For example, the cohort-sequential 

TABLE 9.1. Employee Selection Data Set

 Psychological Job Employment
IQ well-being performance status

 78 13 — 0
 84  9 — 0
 84 10 — 0
 85 10 — 0
 87 — — 0
 91  3 — 0
 92 12 — 0
 94  3 — 0
 94 13 — 0
 96 — — 0
 99  6  7 1
105 12 10 1
105 14 11 1
106 10 15 1
108 — 10 1
112 10 10 1
113 14 12 1
115 14 14 1
118 12 16 1
134 11 12 1
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design from Chapter 1 has variable pairs that are concurrently missing, making it impossible 
to estimate certain elements of the covariance matrix. The same is true for the data in Table 9.1.

The Ridge Prior Distribution

In some situations, reducing the number of variables or eliminating problematic variables is 
the only way to eliminate convergence problems. An alternate strategy is to use a so-called 
ridge prior distribution for the covariance matrix. The standard practice in a multiple impu-
tation analysis is to adopt a noninformative prior distribution that carries no information 
about the mean vector and the covariance matrix. Consequently, the data alone defi ne the 
posterior distributions of ! and " at each P-step. The ridge prior is a semi-informative distri-
bution that contributes additional information about the covariance matrix. Conceptually, the 
ridge prior adds a small number of imaginary data records from a hypothetical population 
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FIGURE 9.1. Time-series and autocorrelation function plot for parameters that do not converge. The 
top panel shows a time-series plot that exhibits systematic trends that last for hundreds of iterations 
and simulated parameter values that are outside of the plausible score range of 1 to 20. The bottom 
panel shows autocorrelations (denoted by a triangle symbol) that are close to r = 0.70 at lag-200.



 Practical Issues in Multiple Imputation 257

where the variables are uncorrelated. These additional data points can stabilize estimation 
and eliminate convergence problems, but they do so at the cost of introducing a slight bias 
to the simulated parameter values (and thus the imputations).

To illustrate the ridge prior, consider a hypothetical imputation model that consists of 
two variables and N = 100 cases. Furthermore, suppose the fi lled-in data from a particular 
I-step yields the following sample covariance matrix and sum of squares and cross products 
matrix.

 
"̂t =

 [1.00  .50] .50 1.00

 
#̂t =

 
(N – 1)"̂t

 = [99.00 49.50] 49.50 99.00

Recall from Chapter 7 that each P-step is a standalone Bayesian analysis that describes the 
posterior distributions and subsequently draws a new set of estimates of the mean vector 
and the covariance matrix from their distributions. With the standard noninformative prior, 
the posterior distribution of the covariance matrix is an inverse Wishart distribution, the 
shape of which depends on the fi lled-in data from the preceding I-step (i.e., the sample size 
and #̂t).

The ridge prior is also an inverse Wishart distribution, but its shape depends on a de-
grees of freedom value and an estimate of the sum of squares and cross products matrix. 
(Collectively, these two parameters are the distribution’s hyperparameters.) The sum of 
squares and cross products matrix for the prior is straightforward because it comes from a 
population covariance matrix with off-diagonal elements of zero and variances equal to those 
of the fi lled-in data. For example, the ridge covariance matrix for the previous bivariate ex-
ample is as follows.

 
"t =

 [1 0] 0 1

Notice that the variances are identical to those of the fi lled-in data, but the covariance is 
zero. Generating the sum of squares and cross products matrix for the prior requires a de-
grees of freedom value. The degrees of freedom value quantifi es the number of “imaginary 
data points” that you assign to the prior and effectively determines the amount of infl uence 
that the prior exerts on the simulated parameter values. For example, assigning two degrees 
of freedom to the prior is akin to saying that an imaginary sample of two cases generated the 
previous covariance matrix. Doing so leads to the following sum of squares and cross prod-
ucts matrix:

 
#t =

 
(dfp)"t

 = 
2[1 0] = [2 0] 0 1 0 2

where dfp is the degrees of freedom value for the prior.
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After implementing a ridge prior, the pooled degrees of freedom (i.e., the degrees of 
freedom from the data plus the number of imaginary cases that you assign to the prior) and 
the pooled sum of squares and cross products matrix (i.e., the sum of #t and #̂t) defi ne the 
shape of the posterior distribution, as follows.

 p("|!̂, Y) ∼ W–1(dfp + N – 1, [#t + #̂t]) (9.1)

Notice that the shape of the posterior distribution depends on the data and the additional 
information from the prior (e.g., the usual posterior distribution has N – 1 and #̂t as its pa-
rameter values). Conceptually, the ridge prior adds dfp imaginary data points from a popula-
tion with uncorrelated variables. Altering the shape of the posterior distribution is the only 
change that occurs from implementing a ridge prior. Consistent with the description of data 
augmentation in Chapter 7, the P-step uses Monte Carlo simulation techniques to draw a 
new covariance matrix from the posterior, and the subsequent I-step uses these simulated 
parameters to construct a set of imputation regression equations.

The ridge prior eliminates convergence problems by increasing the effective sample size, 
but it attenuates the associations among the variables in the process. For example, pooling 
the degrees of freedom values and the sum of squares and cross products matrices from the 
bivariate example yields the following covariance matrix.

 1
"̂t = (dfp + N – 1)–1(#t + #̂t) = ——— ([2 0] + [99.00 49.50]) = [1.00  .49] 2 + 99 1 2 49.50 99.00 .49 1.00

Notice that the covariance matrix has the same diagonal elements (i.e., variances) as the 
sample covariance matrix, but its off-diagonal elements are slightly smaller in magnitude. 
This follows from the fact that the prior distribution contributes two cases from a hypotheti-
cal population with uncorrelated variables. The imputation regression equations at the sub-
sequent I-step depend on the parameter values from the P-step, so it makes intuitive sense 
that the imputations will also contain some bias. The magnitude of this bias depends on the 
number of data points that you assign to the prior, so you should try to minimize the prior 
distribution’s degrees of freedom value. It is impossible to establish good rules of thumb, and 
identifying an appropriate degrees of freedom value usually requires some experimentation.

To illustrate the effect of the ridge prior, I performed data augmentation on the small 
employee data set, this time using a ridge prior with two degrees of freedom. The top panel 
of Figure 9.2 shows the time-series plot for the simulated job performance means. Notice 
that the long-term trends are gone and that the means stay within a plausible range of values. 
The bottom panel of the fi gure shows the time-series plot for the covariance between employ-
ment status and job performance ratings. This parameter was previously inestimable, but the 
simulated parameters now vary around zero (the value specifi ed by the prior). Both plots still 
display systematic trends, but the ridge prior dramatically reduces the problems that were 
evident in Figure 9.1.
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9.3 DEALING WITH NON-NORMAL DATA

The data augmentation algorithm assumes multivariate normality, both at the I-step and at 
the P-step (e.g., the I-step draws residuals from a normal distribution, and the P-step distribu-
tions follow from assuming a normal distribution for the population data). However, Schafer 
and colleagues suggest that normality-based imputation can work for a variety of different 
distribution types (Bernaards, Belin, & Schafer, 2007; Graham & Schafer, 1999; Schafer, 
1997; Schafer & Olsen, 1998). This is an important practical issue because normality is of-
ten the exception rather than the rule (Micceri, 1989). The next section describes special is-
sues that arise with discrete data (e.g., nominal and ordinal variables), but for now it is useful 
to address normality violations in more general terms.

Empirical studies suggest that normality violations may not pose a serious threat to the 
accuracy of multiple imputation parameter estimates (Demirtas, Freels, & Yucel, 2008; Gra-
ham & Schafer, 1999; Leite & Beretvas, 2004; Rubin & Schenker, 1986; Schafer, 1997). 
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FIGURE 9.2. Time-series plot after specifying a ridge prior with ν = 2 degrees of freedom. The top 
panel shows a time-series plot of the job performance mean. The ridge prior eliminated the long-term 
dependencies, and the simulated parameters take on plausible values. The bottom panel shows the 
covariance between job status and job performance. This parameter was not estimable without the 
ridge prior, but now varies around a value of zero (the covariance specifi ed by the prior).
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Perhaps not surprisingly, the magnitude of the bias depends on the sample size and the miss-
ing data rate. For example, Demirtas et al. (2008) found that the parameter estimates and 
standard errors from a bivariate data analysis were relatively accurate with a sample size of 
N = 400 but were quite distorted with a sample size of N = 40. Other simulation studies have 
reported accurate estimates and confi dence intervals with sample sizes as low as N = 100 
(Graham & Schafer, 1999; Schafer, 1997). The percentage of missing data also plays a role, 
such that bias increases as the missing data rate increases. Although it is diffi cult to establish 
rules of thumb about the percentage of missing data, Demirtas et al. (2008) reported accu-
rate parameter estimates with missingness rates as high as 25%. Finally, the impact of nor-
mality violations varies across different parameter estimates. For example, variance estimates 
are sensitive to scores in the tails of a distribution, so they are likely to exhibit more bias than 
means and regression coeffi cients. Other parameters that depend on the tails of a distribution 
(e.g., extreme quantiles such as the 90th percentile) can also be quite sensitive to normality 
violations (Demirtas et al., 2008; Schafer, 1997).

Applying Normalizing Transformations at the Imputation Phase

One way to mitigate the impact of normality violations is to apply normalizing transforma-
tions at the imputation phase. Researchers sometimes object to transformations because the 
metric of the resulting scores is unfamiliar. However, variables can have different scales dur-
ing the imputation and pooling phases, so it is possible to impute the variable on a trans-
formed metric (e.g., a logarithmic scale) and analyze it on its original metric. Popular multiple-
imputation software programs offer a variety of common data transformations, and these 
programs can automatically back-transform variables to their original metric when outputting 
the imputed data sets. Analyzing non-normal variables can still cause problems in the subse-
quent analysis phase, but applying data transformations at the imputation phase can improve 
the validity of data augmentation.

Despite their intuitive appeal, data transformations pose two potential problems. First, 
choosing an appropriate transformation is not necessarily straightforward. For example, loga-
rithmic or square root transformations can work well for positively skewed variables, but the 
magnitude of the skewness and the kurtosis dictates the choice of transformation. Method-
ologists sometimes recommend experimenting with different transformations until you iden-
tify the one that best normalizes the data (Tabachnick & Fidell, 2007). This approach is dif-
fi cult to implement, however, because there are currently no software programs that estimate 
skewness and kurtosis with missing data. Unfortunately, using deletion methods to assess 
the utility of different transformations can produce wildly inaccurate estimates of skewness 
and kurtosis, particularly if data are systematically missing from a distribution’s tails. Data 
transformations are also problematic because they can alter the covariate structure of the 
data. Regression-based imputation relies heavily on the associations among the variables, so 
imputing variables on a transformed metric and back-transforming the scores to the original 
metric can potentially affect the accuracy of the imputations and the resulting parameter 
values. This has prompted some methodologists to raise strong concerns over the appro-
priate use of transformations in the context of multiple imputation (Demirtas et al., 2008, 
pp. 82–83). Further methodological research is needed to clarify this issue.



 Practical Issues in Multiple Imputation 261

Applying Corrective Procedures at the Analysis Phase

Non-normal data can also cause problems at the analysis phase. The methodological literature 
suggests that normality violations have a limited impact on parameter estimates but can bias 
standard errors and distort the likelihood ratio test (Finney & DiStefano, 2006; West, Finch, 
& Curran, 1995). The corrective procedures described in Chapter 5 (e.g., robust standard 
errors and rescaled test statistics) have long been available for complete-data analyses, and 
some of these procedures are readily applicable to multiple imputation. For example, it is 
perfectly appropriate to apply Rubin’s (1987) pooling formulas to robust (i.e., sandwich es-
timator) standard errors. Similarly, the sandwich estimator can generate the within-imputation 
covariance matrices for the D1 test statistic from Chapter 8. Unfortunately, it is unclear how to 
implement corrective procedures for the likelihood ratio test. For example, the methodological 
literature offers no guidance on whether it is appropriate to use rescaled likelihood ratio tests 
to compute the D3 statistic. This is a fruitful area for future methodological research.

9.4 TO ROUND OR NOT TO ROUND?

Discrete measurement scales are exceedingly common in the behavioral and the social sci-
ences, and researchers often incorporate nominal and ordinal variables into the imputation 
phase. Methodologists have developed specialized imputation algorithms for mixtures of cat-
egorical and continuous variables (e.g., the general location model—Schafer, 1997; sequen-
tial regression imputation—Raghunathan, Lepkowski, Van Hoewyk, & Solenberger, 2001), 
some of which I describe later in the chapter. However, these more complex categorical data 
models do not necessarily produce accurate parameter estimates (Belin, Hu, Young, & Grusky, 
1999), so data augmentation may be the best option.

One consequence of applying an imputation model for normal data to discrete variables 
is that the resulting imputations will have decimals. The traditional advice is to round the 
imputed values to the nearest integer or to the nearest plausible value (Schafer, 1997; Schafer 
& Olsen, 1998; Sinharay, Stern, & Russell, 2001). For example, Schafer (1997, p. 148) sug-
gests that “the continuous imputes should be rounded off to the nearest category to preserve 
the distributional properties as fully as possible and to make them intelligible to the analyst.” 
At an intuitive level, rounding is appealing because it eliminates implausible values and 
yields imputations that are aesthetically consistent with the observed data. However, recent 
research suggests that rounding may not be necessary and can actually lead to biased param-
eter estimates.

Much of the empirical work on rounding has focused on binary variables (Allison, 2005; 
Bernaards et al., 2007; Horton, Lipsitz, & Parzen, 2003; Yucel, He, & Zaslavsky, 2008). These 
studies clearly suggest that rounding is something to avoid. At an intuitive level, it is reason-
able to expect the effects of rounding to diminish as the number of ordinal response options 
increases. To date, relatively few studies have systematically examined the impact of round-
ing multiple-category ordinal variables (e.g., 5-point Likert scales). Computer simulation 
studies provide some indirect evidence that rounding is not as problematic with 5-category 
ordinal variables (Van Ginkel, Van der Ark, & Sijtsma, 2007a, 2007b), but analyzing the 
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fractional imputations still appears to be the best option, at least for now (Wu & Enders, 
2009). In some situations the analysis model requires rounding (e.g., a binary outcome in a 
logistic regression, a set of dummy variables). The remainder of this section describes some 
strategies for dealing with this issue.

Rounding Binary Variables

The impact of rounding seems to be most pronounced with binary variables. Including an 
incomplete binary variable (e.g., a dummy variable with codes of zero and one) in the impu-
tation phase will produce a range of imputed values, including fractional values between zero 
and one, values greater than one, and even negative values. One strategy for converting frac-
tional imputations to binary values is to apply a 0.50 rounding threshold to the imputed 
values (i.e., round imputed values that exceed 0.50 to one, and round imputed values that 
are less than 0.50 to zero). However, recent research suggests that this so-called naïve round-
ing scheme introduces bias, whereas analyzing the fractional imputations does not (Allison, 
2005; Bernaards et al., 2007; Horton et al., 2003; Yucel et al., 2008). Although these studies 
clearly suggest that rounding a binary variable is a bad idea, some analysis models require a 
binary outcome variable (e.g., a logistic regression that predicts membership in one of two 
categories). For these situations, methodologists have proposed rounding rules that appear 
to work somewhat better than a simple 0.50 threshold. I describe two such strategies next.

Bernaards et al. (2007) describe a so-called adaptive rounding procedure that relies on 
the normal approximation to a binomial distribution. For each imputed data set, adaptive 
rounding applies the following threshold:

 c = µ̂UR – Φ–1(µ̂UR)√µ̂UR(1 – µ̂UR) (9.2)

where c is the rounding threshold, µ̂UR is the mean of the imputed (i.e., unrounded) binary 
variable, and Φ–1(µ̂UR) is the z value from a standard normal distribution, below which the 
µ̂UR proportion of the distribution falls (i.e., the inverse of the standard normal cumulative 
distribution). To illustrate the adaptive rounding procedure, suppose that the mean of a bi-
nary variable is µ̂UR = 0.67 in a particular imputed data set. In a standard normal distribu-
tion, a z value of 0.44 separates the lowest 67% of the curve from the rest of the distribution. 
Consequently, substituting µ̂UR = 0.67 and Φ–1(µ̂UR) = 0.44 into Equation 9.2 yields a round-
ing threshold of 0.463. Consistent with naïve rounding, imputed values that exceed the 
threshold are rounded to one, and values that fall below the threshold get rounded to zero.

Yucel et al. (2008) describe an alternate rounding strategy that they refer to as calibra-
tion. The fi rst step of the calibration procedure is to create a copy of the raw data and delete 
the observed values of the incomplete binary variable from this fi le (i.e., make the binary 
variable completely missing). The second step is to vertically concatenate the original data 
and the copied data into a single stacked fi le. The fi nal step is to impute the missing values 
in the concatenated fi le. Imputing the stacked data fi le yields fi lled-in values for the sub-
sample of cases that actually have complete data on the binary variable. The idea behind cali-
bration is to use these values to identify a rounding threshold that reproduces the frequency 
of ones and zero in the raw data.



 Practical Issues in Multiple Imputation 263

To illustrate the calibration procedure, Table 9.2 shows a hypothetical sample of N = 10 
cases, 60% of which have data on a binary variable, Y. Furthermore, among the subsample 
of cases that have data, 50% have a code of one. The left-most set of columns shows the origi-
nal data and the duplicate data fi le where Y is completely missing. The middle set of columns 
shows the data that result from imputing the entire set of N = 20 data records. Notice that 
the subsample of complete cases (i.e., the calibration subsample) has imputed values that 
range between 0.270 and 0.737. The goal of calibration is to use this subset of imputations 
to identify a rounding threshold that reproduces the frequency of ones and zeros in the ob-
served data (i.e., a 50/50 split). For clarity, Table 9.2 orders the calibration subsample (shown 
in a shaded box) by their imputed values. As you can see, applying a rounding threshold of 
0.32 to the calibration subsample yields a 50/50 split of ones and zeros. I applied this thresh-
old to the four incomplete cases from the original sample, and the right-most column of the 
table shows the resulting Y values.

To date, no research has compared adaptive rounding to calibration, but both approaches 
appear to be superior to naïve rounding (Bernaards et al., 2007; Yucel et al., 2008). Cali-
bration is likely to exhibit some bias with missing at random (MAR) data (Yucel et al., 2008), 
but simulation studies suggest that adaptive rounding does not suffer from this problem 

TABLE 9.2. Illustration of Calibration Rounding for a Binary Variable

 Stacked data Imputed data Rounded data

ID X Y ID X Y ID X Y

Original data

 1 7 0 1 7 0 1 7 0
 2 10 1 2 10 1 2 10 1
 3 3 1 3 3 1 3 3 1
 4 5 0 4 5 0 4 5 0
 5 5 1 5 5 1 5 5 1
 6 8 0 6 8 0 6 8 0
 7 1 — 7 1 0.596 7 1 1
 8 2 — 8 2 0.172 8 2 0
 9 4 — 9 4 0.857 9 4 1
10 8 — 10 8 0.961 10 8 1

Duplicate data

 1 7 — 6 8 0.270 N/A N/A N/A
 2 10 — 4 5 0.311 N/A N/A N/A
 3 3 — 5 5 0.315 N/A N/A N/A
 4 5 — 1 7 0.500 N/A N/A N/A
 5 5 — 3 3 0.733 N/A N/A N/A
 6 8 — 2 10 0.737 N/A N/A N/A
 7 1 — 7 1 0.451 N/A N/A N/A
 8 2 — 8 2 0.421 N/A N/A N/A
 9 4 — 9 4 0.535 N/A N/A N/A
10 8 — 10 8 0.953 N/A N/A N/A
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(Bernaards et al., 2007). Adaptive rounding also has the advantage of being easier to imple-
ment, so until more research accumulates, it seems prudent to recommend this approach 
over calibration and naïve rounding.

Rounding a Set of Dummy Variables

A second situation in which rounding may be necessary occurs with incomplete nominal 
variables that have more than two categories. The appropriate way to impute a nominal vari-
able is to recast it as a set of g – 1 dummy variables prior to imputation. With complete data, 
cases that belong to the reference group (e.g., a control group or some other normative 
group) have a value of zero on the entire set of dummy variables, and the remaining cases 
have zeros on all but one of the code variables (Cohen, Cohen, West, & Aiken, 2003). How-
ever, applying naive rounding to a set of imputed dummy variables can produce illogical 
values where a case has a code of one on multiple dummy variables. Consequently, it is nec-
essary to apply rounding rules that produce a logical set of dummy codes.

Allison (2002) proposed straightforward rules for rounding a set of dummy variables. 
The cases with missing data on the nominal variable have imputed values for each of the g – 1 
dummy codes. The fi rst step of Allison’s procedure is to compute a new variable that sub-
tracts the sum of the imputed values from a value of one. This new variable serves as a pseudo-
imputation for membership in the reference category (i.e., the group coded all zeros). Next, 
if the pseudo-imputation variable has the highest numeric value, you round the g – 1 dummy 
codes to zero, thereby assigning the case to the reference group. Otherwise, if the highest 
imputed value corresponds to one of the g – 1 dummy variables, you assign a value of one 
to the appropriate code variable and set the remaining dummy codes to zero. To illustrate 
Allison’s rounding rules, Table 9.3 shows a small set of hypothetical imputations for a set of 
two dummy codes, D1 and D2 (i.e., a nominal variable with three categories). The fi rst two 
columns contain the imputed values for D1 and D2 and the middle column is the pseudo-
imputation for membership in the reference category (i.e., 1 – D1 – D2). As you can see, the 
highest value in the fi rst three columns determines each case’s group membership. It is im-
portant to note that Allison’s rounding rules have not been evaluated in the literature. Never-
theless, his rules provide a convenient solution for an imputation model that includes a 
number of multiple-category nominal variables.

TABLE 9.3. Illustration of Dummy Code Rounding Rules

 Imputed codes Rounded codes

D1 D2 1 – D1 – D2 D1 D2

 0.65 0.23 0.12 1 0
–0.12 0.55 0.57 0 0
 0.77 –0.02 0.25 1 0
 0.37 0.82 –0.19 0 1
 0.05 1.08 –0.13 0 1
 0.42 –0.02 0.60 0 0
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Out-of-Range Imputations

In addition to producing fractional values, data augmentation will often produce imputations 
that fall outside of the plausible score range (e.g., a 5-point Likert variable that has an im-
puted value of 5.23). There are essentially three options for dealing with out-of-range values: 
(1) analyze the imputed values as they are, (2) round to the nearest plausible score value, or 
(3) generate new imputations for cases that have out-of-range values (e.g., by adding a new 
random residual to each predicted score). Multiple-imputation software packages make the 
latter two options easy to implement, but analyzing the out-of-range values may be a fi ne 
option, particularly if they are relatively few in number. At an intuitive level, out-of-range 
imputations can infl ate variance estimates, but this bias is probably trivial if the number of 
implausible values is relatively small.

A large proportion of out-of-range imputations can be symptomatic of a normality viola-
tion, so transforming the data at the imputation phase may reduce or eliminate out-of-range 
values. However, transformations are unlikely to eliminate implausible imputations that occur 
when an ordinal variable has an asymmetric distribution (e.g., responses are isolated to small 
number of categories). Rounding the imputed values to the nearest plausible value is one 
solution, but an alternate strategy is to recast the ordinal variable as a set of dummy codes 
and apply Allison’s (2001) rounding rules following imputation.

9.5 PRESERVING INTERACTION EFFECTS

Researchers in the behavioral and the social sciences are often interested in estimating inter-
action (i.e., moderation) effects where the magnitude of the association between two vari-
ables depends on a third variable. In some situations, the interaction effect appears as an 
explicit term in the analysis model. For example, if it was of interest to determine whether the 
association between psychological well-being and job performance is different for males and 
females, including a product term in a multiple regression model could address this question 
(i.e., moderated multiple regression; Aiken & West, 1991). Many other analyses model 
implicit interaction effects. For example, multiple-group structural equation models do not 
contain explicit interaction terms, yet they allow for group differences in the mean structure, 
the covariance structure, or both. A multilevel model with random intercepts and slopes is 
another analysis that involves implicit interaction effects.

When using multiple imputation to treat missing data, it is important to specify an im-
putation model that preserves any interaction effects that are of interest in the subsequent 
analysis model because failing to do so will attenuate the magnitude of these effects, even if 
the data are missing completely at random (MCAR). For example, if gender moderates the 
association between psychological well-being and job performance, failing to build this com-
plex association into the imputation model is likely to produce an analysis that masks the 
gender difference. Similarly, an imputation model that fails to preserve group differences in 
the mean or the covariance structure could lead to the conclusion that the parameters of a 
multiple group structural equation model are invariant (i.e., the same) across groups when 
they are truly different in the population. This section outlines different imputation strategies 
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for dealing with interactive effects. The appropriate strategy depends largely on whether the 
interaction involves a categorical or a continuous moderator variable.

Interactions That Involve Quantitative Variables

If the analysis model includes an interaction effect between two quantitative variables, then 
the imputation phase should include a variable that is the product of the two interacting 
variables. This is effectively the only way to preserve the interaction. For example, suppose 
that it is of interest to determine whether the number of years on the job moderates the rela-
tionship between psychological well-being and job performance. A standard approach for 
addressing this question is to estimate a multiple regression model that includes main effects 
and a product term as predictor variables (e.g., years on the job, psychological well-being, 
and the product of years on the job and well-being). The imputation phase also employs a 
multiple regression model, so it too should include the same set of variables. The product 
variable is particularly important because it preserves the complex associations among the 
variables. It is important to point out that including a product variable in the imputation 
phase does not create an interaction effect where none exists. Rather, it simply preserves the 
natural structure of the data. Finally, note that the product term strategy also applies to non-
linear associations. For example, if the analysis model includes a quadratic effect, then the 
imputation phase should include main effects and a squared term.

When an analysis model includes an interaction effect between two or more quantitative 
variables, it is important to center predictor variables at their means (i.e., subtract the mean 
from each score) prior to analyzing the data (Aiken & West, 1991). However, centering be-
comes diffi cult when one of the variables in the product term has missing data. One option 
is to center the variables prior to imputation, compute the necessary product term, and fi ll in 
the missing variables (including the product term) on their centered metrics. This approach 
requires estimates of the variable means, so maximum likelihood estimates (e.g., from an 
initial EM analysis) are a logical choice. A second strategy is to fi ll in the missing variables 
(including the product term) on their original metrics and subsequently perform the center-
ing procedure on each of the complete data sets. Because the product of two uncentered 
variables has a larger mean and a larger variance than the product of two centered variables 
(Bohrnstedt & Goldberger, 1969), this method requires a complete rescaling of the imputed 
product variable. Neither of these approaches has been evaluated in the literature, but cen-
tering the variables prior to imputation is far easier and tends to yield estimates that are simi-
lar to those of a maximum likelihood analysis. Until further research suggests otherwise, this 
is probably the best strategy.

Interactions That Involve a Categorical Variable

When it is of interest to examine an interaction effect that involves a categorical variable, 
imputing the data separately for each subgroup is often more accurate than including prod-
uct terms in the imputation model (Enders & Gottschall, in press). To understand why, sup-
pose that it is of interest to determine whether a binary categorical variable D moderates the 
association between X and Y (e.g., gender moderates the association between psychological 
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well-being and job performance). Furthermore, suppose that some individuals have missing 
Y values. Using a product term to preserve the interaction effect yields the following imputa-
tion model:

 yi* = β̂0 + β̂1(Xi) + β̂2(Di) + β̂2(Xi)(Di) + zi (9.3)

where yi* is the imputed value for case i, Xi and Di are the observed scores for that case, and 
zi is a normally distributed residual term. Including the dummy code variable in the imputa-
tion model preserves group mean differences on Y, and the product term preserves group 
differences in the covariance between X and Y. It may not be immediately obvious, but using 
a single normal distribution to generate the residual terms effectively assumes that both 
groups have the same Y variance (i.e., data augmentation generates imputations that are 
homoscedastic). This subtle assumption may have a relatively minor impact on many analy-
ses, but in a number of situations the substantive goal is to determine whether the covariance 
structure is the same across qualitatively different subpopulations (e.g., measurement invari-
ance analyses, multiple-group structural equation models). If the subgroups have different 
population variances, then the product term approach will generate imputations that mask 
these group differences (Enders & Gottschall, in press).

A simple solution to the previous problem is to impute the data separately for each sub-
group (i.e., separate-group imputation). Because this approach uses a unique imputation 
equation and a unique residual distribution for each subpopulation, every element in the 
mean vector and the covariance matrix will freely vary across groups. The downsides of sep-
arate-group imputation are that it (1) is limited to situations that involve categorical mod-
erator variables, (2) requires adequate group sizes, and (3) necessitates additional effort to 
assess convergence (e.g., by examining the time-series and autocorrelation function plots for 
each subgroup). Despite these potential limitations, the approach is very easy to implement 
in multiple imputation software programs and has performed well in computer simulation 
studies, even with a smple size as low as n = 50 per group (Enders & Gottschall, in press).

Models with Implicit Interaction Effects

Many common statistical analyses involve implicit interaction effects. Multiple-group struc-
tural equation models are one such example. To illustrate, consider a measurement invariance 
analysis in which it is of interest to determine whether the factor model parameters (e.g., the 
loadings, measurement intercepts) are the same across qualitatively different subpopulations 
(e.g., males and females, Caucasians, and Hispanics). A typical measurement invariance 
analysis begins with separate factor models for each subgroup. Subsequent analysis steps 
constrain sets of parameter estimates (e.g., the factor loadings) to be equal across groups. If 
the constrained model fi ts the data as well as the unconstrained model, then there is evi-
dence that the subgroups have the same population mean vector or covariance matrix. In 
contrast, a constrained model that shows worse fi t suggests that the subgroups have a differ-
ent mean vector or covariance matrix.

Multiple-group structural equation models do not contain explicit interaction effects, 
but they allow for group differences in the mean structure, covariance structure, or both. 
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Consequently, it is necessary to specify an imputation model that preserves these group dif-
ferences. Incorporating product terms into the imputation phase is problematic because it 
generates imputations from a model that assumes equal variances across groups. As a result, 
the subsequent analyses are likely to suggest that certain parameters are invariant (i.e., the 
same) across groups, when they are actually different in the population. In contrast, separate-
group imputation naturally preserves group differences in the mean vector and the covari-
ance matrix and will lead to more accurate assessments of subgroup differences. Computer 
simulations suggest that the separate-group imputation approach produces accurate param-
eter estimates in a variety of multiple-group structural equation models (e.g., moderated 
mediation, multiple-group confi rmatory factor analysis, multiple-group growth curves), with 
sample sizes as low as n = 50 per group (Enders & Gottschall, in press).

A multilevel model with random intercepts and slopes is another analysis that contains 
implicit interaction effects. To illustrate, consider an educational study in which students 
(i.e., level-1 units) are nested within schools (i.e., level-2 units). Furthermore, suppose that 
it is of interest to examine the infl uence of student socioeconomic status on academic 
achievement. A random intercept model is one in which the mean achievement level differs 
across schools, and a random slope model allows the association between socioeconomic 
status and achievement to vary across schools. These group differences in the mean and the 
covariance structure show up as variance estimates rather than as regression coeffi cients, but 
they are interaction effects, nevertheless.

The data augmentation algorithm from Chapter 7 is not designed for multilevel data struc-
tures where the associations among variables potentially vary across clusters. In principle, 
separate-group imputation is appropriate for imputing missing values at the lowest level of 
the data hierarchy (e.g., by imputing individual-level variables separately for each cluster), 
but this approach requires a relatively large number of cases within each cluster. Many (if not 
most) common applications of multilevel modeling (e.g., dyadic data, longitudinal data, chil-
dren nested within classrooms) do not have adequate group sizes to support this method. A 
better strategy is to use a specialized imputation algorithm for multilevel data (Schafer, 2001; 
Schafer & Yucel, 2002; Yucel, 2008). I describe one such algorithm later in the chapter.

A Cautionary Note on Latent Categorical Variables

A number of popular statistical models treat group membership as a latent categorical vari-
able. Finite mixture models (McLachlan & Peel, 2000; Muthén, 2001, 2004) and latent class 
models (McCutcheon, 1987) are two common examples. Consistent with a multiple group 
structural equation model, it is often of interest to determine whether the latent classes have 
different mean and covariance structures. For example, a growth mixture model is character-
ized by a number of latent subgroups, each of which can have a different growth trajectory 
(i.e., different mean structures) and varying degrees of individual heterogeneity in the growth 
trajectories (i.e., different covariance structures). These models are important to consider 
because they are becoming increasingly common in the social sciences.

Because group membership is inferred from the data during the analysis, there is no way 
to use product terms or separate-group imputation to preserve the implicit interaction effects 
that are present in the data. Consequently, multiple imputation can produce biased estimates 
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of the model parameters, even when the data are MCAR (Enders & Gottschall, in press). 
Fortunately, maximum likelihood missing data routines are readily available for many popu-
lar latent class models (e.g., growth mixture models, factor mixture models), so there is no 
need to rely on multiple imputation. Methodologists are also beginning to develop imputation 
algorithms for latent categorical variables (Vermunt, Van Ginkel, Van der Ark, & Sijtsma, 2008). 
As a result, these procedures are likely to become increasingly common in the near future.

9.6 IMPUTING MULTIPLE-ITEM QUESTIONNAIRES

Researchers in the behavioral and the social sciences routinely use multiple-item question-
naires to measure complex constructs. For example, psychologists typically use several ques-
tionnaire items to measure depression, each of which taps into a different depressive symptom 
(e.g., sadness, lack of energy, sleep diffi culties, feelings of hopelessness). With multiple-item 
questionnaires, respondents often omit one or more of the items within a given scale. Mul-
tiple imputation is advantageous because it provides a mechanism for dealing with item-level 
missingness (maximum likelihood can be less fl exible in this regard). However, imputation 
can be challenging or even impossible when the data contain a large number of questionnaire 
items. This is an important practical issue because it is not uncommon for researchers to 
administer a dozen or more questionnaires in a single study, each of which may contain 20 
or more items. The number of variables can quickly multiply in a longitudinal study that has 
several questionnaires administered on multiple occasions.

Ideally, the imputation phase should include all of the individual questionnaire items 
because this maximizes the information that goes into creating the imputations. However, 
item-level imputation may not be feasible when the number of questionnaire items is very 
large. As an upper limit, the number of variables in the imputation model cannot exceed the 
number of cases because the input data contain linear dependencies that cause mathematical 
diffi culties for regression-based imputation. Because missing data exacerbate these mathemat-
ical diffi culties, the allowable number of variables tends to be much lower than the number 
of cases. One possible solution for imputing large data sets is to use a ridge prior described 
earlier in the chapter. Conceptually, the ridge prior adds a number of imaginary data records 
(i.e., degrees of freedom) to the estimation process, but it does so at the cost of attenuating 
the associations among the variables. A complex imputation model can require a relatively 
large number of additional degrees of freedom, in which case the ridge prior might be a poor 
solution. An alternative approach is to perform separate data augmentation runs for different 
subsets of variables. However, this strategy effectively assumes that variables from different 
subsets are uncorrelated, and it is viable only if variables from different subsets are not part of 
the same analysis model. This section outlines three alternative approaches for imputing large 
questionnaire data sets: scale-level, duplicate scale, and a three-step imputation approach.

Scale-Level Imputation

When collecting data with multiple-item questionnaires, researchers are often interested in 
analyzing scale scores based on a sum or an average of the item responses. When the analysis 
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model involves scale scores, ignoring the item-level data and imputing the scale scores them-
selves can dramatically reduce the number of imputation model variables (Graham, 2009). 
Under this scale-level imputation approach, the cases that have complete data on a particu-
lar subset of items (e.g., a set of depression items) also have complete data on the scale score, 
whereas the individuals who fail to answer one or more of the questionnaire items have miss-
ing data. To illustrate, Table 9.4 shows a small data set with a single auxiliary variable and six 
questionnaire items (X1 to X3 and Y1 to Y3) that combine to form two subscales, SX and SY. 
The scale-level imputation procedure for these data would include just three variables: SX, SY, 
and the auxiliary variable, Z.

Scale-level imputation can dramatically reduce the number of variables in the imputa-
tion model and can eliminate the mathematical diffi culties associated with imputing a large 
number of individual items. However, it does so at the cost of reducing statistical power. In 
my experience, scale-level imputation can increase standard errors by up to 10% relative to 
an ideal analysis that uses scale scores from an item-level imputation procedure. This de-
crease in statistical power becomes increasingly evident as the number of items within a scale 
increases. The failure of scale-level imputation stems from the fact that questionnaire items 
within a scale tend to have stronger correlations than items from different scales. Conse-
quently, the imputation phase effectively discards the strongest predictors of the missing scale 
scores (i.e., the items within the scale) in favor of weaker correlates (i.e., items from different 
scales).

One way to mitigate the power loss from scale-level imputation is to incorporate the 
item-level information back into the imputation model. A simple way to do this is to com-
pute a second set of scale scores by averaging the available items within each questionnaire. 
For example, if a respondent answered 8 out of 10 items on a particular questionnaire, the 
scale score for that individual would be the average of the eight observed items. Incorporat-
ing these additional scales into the imputation phase as auxiliary variables can recapture 
much of the item-level information that scale-level imputation ignores. For lack of a better 
term, I henceforth refer to this approach as duplicate-scale imputation. The right-most sec-
tion of Table 9.4 illustrates the input data for this method. Notice that the complete cases have 
identical scores on both sets of scales (e.g., SX and AX are the same), whereas the incomplete 
cases only have data on the duplicate scales. The duplicate-scale imputation approach requires 

TABLE 9.4. Input Data for Item-Level, Scale-Level, and Duplicate-Scale Imputation

  Scale-level
 Item-level imputation imputation Duplicate-scale imputation

X1 X2 X3 Y1 Y2 Y3 Z SX SY Z SX SY Z AX AY

5 4 5 3 — 4 20 4.67 — 20 4.67 — 20 4.67 3.50
2 — 1 3 2 3 17 — 2.67 17 — 2.67 17 1.50 2.67
4 3 5 5 5 4 24 4.00 4.67 24 4.00 4.67 24 4.00 4.67
— 3 2 — — 4 13 — — 13 — — 13 2.50 4.00
1 1 3 2 2 1  9 1.67 1.67  9 1.67 1.67  9 1.67 1.67

Note. SX and SY are scale scores that average the individual questionnaire items (X1 – X3 and Y1 – Y3). The scale 
scores are missing if one or more of the items are missing. AX and AY are averages of the available items within each 
scale, and Z is an auxiliary variable.
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twice as many variables as scale-level imputation, but it can dramatically reduce the complex-
ity of the imputation model. For example, suppose that the two questionnaires in Table 9.4 
had 20 items each. Duplicate-scale imputation would still only require fi ve variables: SX, SY, 
AX, AY, and Z.

In my experience, duplicate-scale imputation tends to yield parameter estimates and 
standard errors that are nearly identical to those of an ideal analysis that uses scale scores 
from an item-level imputation procedure. However, getting duplicate-scale imputation to 
work properly requires an additional nuance. Because the cases with complete data have 
identical scores on both sets of scales, the data contain linear dependencies that cause esti-
mation problems for data augmentation. Using a ridge prior distribution to add imaginary 
data records to the imputation process can solve this problem. Fortunately, adding a small 
number of additional degrees of freedom usually eliminates the linear dependencies, so any 
bias that results from use of a ridge prior is negligible. For example, later in the chapter I 
present an analysis example in which adding a single imaginary data record (i.e., a ridge prior 
with a single degree of freedom) eliminates the linear dependencies in the imputation model 
and produces parameter estimates and standard errors that are virtually identical to those of 
item-level imputation.

A Three-Step Approach for Item-Level Imputation

The duplicate-scale approach can work well for analyses that involve scale scores, but many 
analysis models require item-level data (e.g., internal consistency reliability analyses, confi r-
matory factor analyses). In situations where the number of items is prohibitively large, Little, 
McConnell, Howard, and Stump (2008) outline a three-step approach for item-level imputa-
tion. The idea behind their procedure is to separately impute different subsets of question-
naire items. This strategy is usually undesirable because it assumes that variables from differ-
ent item subsets are uncorrelated. However, Little et al. solve this problem by using scale 
scores to preserve the between-subset associations.

The Little et al. procedure requires a complete set of scale scores. The authors use scale-
level imputation to generate these scores, but averaging the available items within a scale is 
another option. These initial scale scores are simply temporary auxiliary variables, so the 
method that you use to generate them probably makes little difference. The second step in-
volves an iterative imputation process that repeatedly fi lls in the item scores from one subset 
while using the scale scores from the remaining subsets as auxiliary variables. As an example, 
consider a study that collects data on 10 multiple-item questionnaires (i.e., Q1 to Q10), each 
of which has 20 items. The fi rst imputation phase might consist of the 20 items from Q1 and 
the scale scores for Q2 through Q10. Similarly, the second imputation model could include the 
Q2 items and the scale scores for the nine remaining questionnaires (i.e., Q1, Q3 through Q10). 
Depending on the sample size, it may be possible to perform fewer data augmentation runs 
with larger item subsets (e.g., impute the items from Q1 through Q5 while using the scale 
scores for Q6 through Q10 as auxiliary variables). After completing the imputation process for 
each item subset, the temporary placeholder scales from the fi rst step are no longer neces-
sary. Consequently, the fi nal step is to discard the initial scales and compute a new set of 
composite scores from the fi lled-in item responses.
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To date, no studies have evaluated the duplicate-scale approach or the three-step impu-
tation approach. Because a single scale score preserves the between-subset associations, these 
procedures probably work best when the items within one subset have relatively uniform 
correlations with the items from another subset. Fortunately, this is a fairly realistic condition 
for many scales in the behavioral and the social sciences, so these procedures probably work 
well in a variety of settings. The imputation of large item-level data sets is an important prac-
tical topic that warrants future methodological research.

9.7 ALTERNATE IMPUTATION ALGORITHMS

Although the data augmentation algorithm in Chapter 7 is probably the most popular impu-
tation strategy, methodologists have developed a number of alternative imputation routines. 
Some of these algorithms are applicable to specialized situations that are relatively uncom-
mon in the behavioral and the social sciences (e.g., data comprised entirely of categorical 
variables; Schafer, 1997; randomized trials with monotone missing data patterns; Lavori, 
Daw son, & Shera, 1995), while others are suitable replacements for data augmentation 
(King, Honaker, Joseph, & Scheve, 2001). A thorough review of different imputation options 
is beyond the scope of this chapter, but it is useful to briefl y describe some of these alter-
native models. This section begins with a description of an EM-based imputation algorithm 
that is statistically equivalent to data augmentation. Next, the section outlines two algo-
rithms for imputing data sets that contain a mixture of categorical and continuous variables. 
The fi nal section describes an imputation algorithm for multilevel data structures. Note that 
the algorithms in this section simply replace data augmentation in the imputation phase and 
do not require changes to the analysis and pooling phases.

EM-Based Algorithms for Multivariate Normal Data

Generating unique sets of imputations from multivariate normal data requires several alter-
nate estimates of the mean vector and the covariance matrix. The P-step of data augmenta-
tion generates these estimates by simulating random draws from a posterior distribution. 
King et al. (2001) describe two approaches that use the EM algorithm from Chapter 4 to 
generate alternate estimates of the mean vector and the covariance matrix. These EM-based 
approaches also simulate random draws from a posterior distribution, but they do so in a 
very different fashion. The EM with an importance sampling algorithm is particularly inter-
esting because it is statistically equivalent to data augmentation, yet it does not require the 
same complicated defi nition of convergence.

EM with sampling (EMS) begins by using the EM algorithm to estimate the mean vector 
and the covariance matrix. These maximum likelihood estimates describe the central tendency 
of the posterior distributions from which the algorithm will draw alternate parameter esti-
mates. Next, the algorithm computes the parameter covariance matrix for the EM estimates 
and uses this matrix to defi ne the spread of the posterior distributions. Having characterized 
the shape of the posterior distribution, the EMS algorithm uses Monte Carlo simulation tech-
niques to draw m new estimates of the mean vector and the covariance matrix from their 
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respective posteriors. This process does not require a long iterative chain. Rather, the algo-
rithm simply generates the desired number of alternate estimates. Finally, EMS uses each set 
of parameter values to construct regression equations that impute the missing values. The 
fi nal imputation stage is identical to stochastic regression imputation (or alternatively, the 
I-step of data augmentation).

Using the parameter covariance matrix to estimate the spread of the posterior distribu-
tion is only appropriate in very large samples and can produce biased parameter estimates in 
small to moderate samples (King et al., 2001). To correct this problem, King et al. proposed 
a modifi ed algorithm that they call EM with importance sampling (EMIS). EMIS also uses 
maximum likelihood estimates and the parameter covariance matrix to approximate the 
posterior distributions, but it uses the likelihood function to fi ne-tune the shape of the dis-
tributions. Rather than retaining every set of simulated the parameter values, the algorithm 
selectively discards the estimates that are inconsistent with the data (i.e., estimates that have 
a low likelihood of producing the sample data).

More specifi cally, the EMIS algorithm works as follows. First, the algorithm uses Monte 
Carlo simulation techniques to draw a set of alternate parameter values from a multivariate 
normal posterior distribution, the shape of which is defi ned by the EM estimates and the 
corresponding parameter covariance matrix. With small to moderate samples, the true pos-
terior distribution may quite skewed, in which case the simulated parameters are not always 
accurate. Then, to remedy this problem, EMIS uses the likelihood function to weed out 
implausible parameter values. (Assuming a noninformative prior distribution, the likelihood 
function has the same shape as the correct posterior distribution.) Specifi cally, the algorithm 
generates an importance ratio by substituting the simulated parameters into the likelihood 
function and converting the resulting likelihood value into a probability. Simulated parameter 
values that have a high likelihood of producing the sample data also have a high importance 
ratio (i.e., probability), whereas parameters that are unlikely to have produced the sample 
data have a low importance ratio. To decide whether to retain a particular set of parameters, 
the algorithm generates a uniform random number between zero and one and compares this 
number to the importance ratio. EMIS retains the estimates if the uniform random number 
is less than the importance ratio. Otherwise, the algorithm discards the estimates and gener-
ates a new set. This so-called acceptance-rejection algorithm repeatedly screens simulated 
parameter values until it retains m sets of plausible estimates. The resulting estimates more 
closely approximate random draws from the true posterior distribution, the shape of which 
may not resemble a normal distribution. Finally, EMIS uses the retained parameter values to 
construct regression equations that impute the missing values. The fi nal imputation stage is 
identical to stochastic regression imputation.

The EMIS algorithm is statistically equivalent to data augmentation (i.e., it will yield 
the same analysis results, on average) but offers some potential advantages. One advantage 
is that EMIS can be easier to implement. Because the simulated parameter values do not 
depend on the imputed values from a preceding iteration, the m sets of imputations are au-
tomatically independent samples from the distribution of missing values. This simplifi es the 
imputation process considerably because it eliminates the need for graphical convergence 
diagnostics. By extension, there is no need to worry about the number of between-imputation 
iterations or other convergence-related issues that make data augmentation challenging to 
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implement. Speed is a second advantage. Data augmentation often requires thousands of it-
erations to generate a relatively small number of data sets. With large data fi les, this can take 
a considerable amount of time. Because EMIS does not continually iterate between draws, it 
can generate the same number of data sets in a much shorter period (e.g., problems that take 
data augmentation several minutes to run take EMIS just a few seconds). Although data aug-
mentation is the predominant method for generating imputations with multivariate normal 
data, the EMIS algorithm is certainly worth considering. At the time of this writing, Amelia is 
the only software program that implements EMIS.

Algorithms for Categorical and Continuous Variables

One shortcoming of the data augmentation is that it assumes a common distribution for every 
variable in the data set (i.e., the multivariate normal distribution). This is an unrealistic as-
sumption because data sets often contain a mixture of categorical and continuous variables. 
Schafer (1997) and colleagues suggest that normality-based imputation can often work well 
with categorical (e.g., nominal and ordinal) variables, but it is worth considering imputation 
algorithms that do not assume a common distribution. This section describes two such ap-
proaches: the general location model and sequential regression imputation. These methods 
are similar in the sense that they apply different imputation models to categorical and con-
tinuous variables, but their procedural details are quite different. Of the two, sequential 
regression is particularly promising because it is conceptually straightforward and has per-
formed well in empirical studies.

Schafer (1997, Chapter 9) describes an imputation approach for categorical and con-
tinuous variables based on the so-called general location model (Little & Schluchter, 1985; 
Olkin & Tate, 1961). The general location model uses a fully crossed contingency table to 
represent the categorical variables, and it assumes that the continuous variables follow a 
normal distribution within each cell of the table. The model for the continuous variables 
resembles a factorial multivariate analysis of variance (MANOVA) in the sense that the cells 
share a common covariance matrix but can have different means. To illustrate the general loca-
tion model, consider a data set with two continuous variables and two categorical variables, 
both of which have three levels. (The categories can be ordered, but the model treats them as 
nominal.) The saturated general location model for this example has 29 parameters. The con-
tingency table is comprised of nine cells, so the categorical variables contribute eight param-
eters to the model (if the sample size is fi xed, the frequency for the ninth cell is determined 
by the other eight). The continuous variable means vary across cells, adding another 18 pa-
rameters, and the covariance matrix of the continuous variables has three unique elements.

Schafer (1997) outlined a data augmentation algorithm for the general location model 
that consists of an I-step and a P-step. The procedure follows the same basic logic as data 
augmentation for multivariate normal data, but it uses different distribution families (e.g., 
the categorical variables follow a multinomial distribution, and the continuous variables are 
normally distributed within cells of the contingency table). The I-step imputes the incom-
plete categorical variables by assigning each missing observation to a cell in the contingency 
table, and it then uses a stochastic regression procedure to impute the missing continuous 
variables. The continuous variables inform the categorical imputations and vice versa. Con-
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ditional on the imputations from the preceding I-step, the P-step draws new cell probabilities 
for the contingency table and subsequently generates a new covariance matrix and a new set 
of cell means. Schafer describes the data augmentation algorithm in considerable detail, and 
both Schafer and Belin et al. (1999) illustrate applications of the general location model.

The general location model is seemingly well-suited for many realistic missing data 
problems, but it may not be the best option for imputing mixtures of categorical and continu-
ous variables. One problem is that the model becomes exceedingly complex as the number 
of variables increases. For example, Belin et al. (1999) applied the general location model to 
a data set with 16 binary variables and 18 continuous variables. Although this data set is not 
unusually large, the saturated model has more than one million parameters! The staggering 
number of parameters is attributable to the fact that the model includes main effects as well 
as every possible higher-order interaction among the categorical variables. In practice, it is 
usually necessary to perform a series of preliminary analyses to simplify the model prior to 
data augmentation, but doing so adds a layer of complexity to the imputation process. Com-
plexity issues aside, Belin et al. (1999) raise concerns about the accuracy of the general loca-
tion model, particularly for categorical imputations. Until further research is done, it may be 
best to view the general location model with some caution.

Sequential regression imputation is a second approach for imputing data sets that 
contain mixtures of categorical and continuous variables. (The literature also refers to this 
method as chained equations and fully conditional specifi cation.) Unlike the general loca-
tion model, sequential regression imputation fi lls in the data on a variable-by-variable basis, 
each time matching the imputation model to a variable’s distributional form. For example, 
the algorithm can use a linear regression to impute continuous variables, a logistic regression 
to impute binary variables, a Poisson regression to impute count variables, and so on. The 
remainder of this section gives a brief overview of the algorithm, and a number of sources 
provide more detailed descriptions of this approach (Raghunathan et al., 2001; van Buuren, 
2007; van Buuren, Brand, Groothuis-Oudshoorn, & Rubin, 2006).

Like data augmentation, the sequential regression approach uses regression equations 
to generate draws from the conditional distribution of the missing values, given the observed 
data. However, the mechanics of imputation are quite different. For one, the algorithm im-
putes variables in a sequence, one at a time. The imputation order is determined by the rates 
of missingness, where the variable with the fewest missing values gets imputed fi rst, the vari-
able with the next lowest missing data rate gets imputed second, and so on. Each step in the 
imputation sequence can apply a regression model that is appropriate for the scale of the 
incomplete variable (e.g., a logistic regression imputes incomplete binary variables, a linear 
regression imputes normally distributed variables, and so on). Unlike data augmentation, 
each regression model uses the fi lled-in values from one sequence to generate imputations 
for subsequent sequences. For example, suppose that Y3 gets imputed in the fi rst regression 
sequence, Y1 gets imputed in the second sequence, and Y4 in the fi nal sequence. After the 
initial sequence, the algorithm treats Y3 as a complete variable and uses the observed and 
the imputed values as predictors of the missing Y1 scores. Similarly, the next sequence uses 
the fi lled-in values of Y3 and Y1 to impute Y4.

After fi lling in the entire data set, the algorithm uses a Bayesian procedure that is akin 
to the P-step of data augmentation to sample a new set of regression parameters, and the 



276 APPLIED MISSING DATA ANALYSIS

process begins anew. The second and subsequent rounds of imputation also fi ll in the data 
on a variable-by-variable basis, but they do so using all variables in the imputation model, 
including the fi lled-in variables from the preceding iteration. For example, the fi lled-in values 
of Y1 and Y4 from the fi rst imputation cycle serve as predictors of Y3 in the fi rst sequence of 
the second imputation cycle. The sequential regression algorithm iterates for a specifi ed num-
ber of cycles, and the imputed values from the fi nal iteration serve as data for a subsequent 
analysis. Repeating the imputation chain m times generates unique sets of imputed values.

The sequential regression approach has a number of advantages over data augmenta-
tion. Most importantly, it is unnecessary to assume that the variables share a common distri-
bution because the algorithm tailors the imputation model to each incomplete variable. In 
addition, formulating a separate imputation model for each variable makes it easy to specify 
constraints that preserve special characteristics of the data. For example, to avoid logical in-
consistencies between two variables, the range of imputed values for one variable can depend 
on the responses to another variable. Similarly, it is straightforward to accommodate survey 
skip patterns by restricting imputation to the subsample of cases that endorse a screener 
question. Despite its advantages, using separate regression models for imputation also intro-
duces diffi culties. For one, implementing the procedure is more cumbersome because it re-
quires additional programming that is not necessary with data augmentation. Second, the 
use of diverse regression models can produce a situation where the algorithm fails to con-
verge to a stable distribution (Raghunathan et al., 2001). In addition, assessing convergence 
is typically more diffi cult with sequential regression than it is with data augmentation (see 
Van Buuuren, 2007, for an illustration). Despite these potentially serious diffi culties, simu-
lation studies suggest that sequential regression performs well and can produce unbiased 
parameter estimates and standard errors (Raguhunathan et al., 2001; van Buuren et al., 2006). 
Although additional methodological research is needed, the sequential regression method 
may become a viable alternative to data augmentation when the data contain mixtures of 
categorical and continuous variables. A number of specialized software packages implement 
the sequential regression approach (e.g., MICE, ICE, IVEWARE), and the SPSS Missing Val-
ues add-on (available in version 17 and higher) also offers this imputation option.

An Algorithm for Multilevel Data

Multilevel data structures are characterized by observations that are nested within higher-
level units or clusters (e.g., children nested within schools, employees nested within work-
groups, repeated measures nested within individuals). Multilevel analysis techniques are 
well-suited for these data structures because they appropriately account for the nesting and 
allow researchers to investigate associations at different levels of the data hierarchy (Rauden-
bush & Bryk, 2002). The data augmentation algorithm from Chapter 7 is inappropriate for 
multilevel data sets because it fails to preserve between-cluster differences in the mean struc-
ture and the covariance structure. For example, in an education study, the association be-
tween socioeconomic status and student achievement might differ across schools, but data 
augmentation imputes missing values from a model where this association is constant for all 
schools in the sample. Not surprisingly, this can seriously distort the subsequent parameter 
estimates.
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Methodologists have developed specialized imputation algorithms for multilevel data 
(Schafer, 2001; Schafer & Yucel, 2002; Yucel, 2008). These routines may require software 
packages that you are not familiar with (e.g., the PAN library for the S-Plus program), but 
taking the time to learn one of these programs can provide an advantage over using maxi-
mum likelihood to estimate a multilevel model with missing data. At this time, multilevel 
software packages generally allow for missing data on outcome variables, but they eliminate 
cases with missing predictor variables. Although there is often little reason to prefer multiple 
imputation over maximum likelihood (or vice versa), the ability to retain cases with missing 
predictor variables gives multiple imputation a clear advantage in this situation. Analyzing 
multiply imputed data sets is also very straightforward because a number of multilevel soft-
ware packages have facilities for automating the analysis and pooling phases.

Before describing the multilevel imputation algorithm, it is useful to review the multi-
level model. As an illustration, consider a study of school achievement where children (i.e., 
level-1 units) are nested within a number of different schools (i.e., level-2 units). Furthermore, 
suppose that it is of interest to predict student achievement based on socioeconomic status 
and school size. The multilevel regression model for this analysis is

 Yij = γ00 + γ10(SESij) + γ01(Sizej) + γ11(SESij)(Sizej) + uoj + u1j(SESij) + rij (9.4)

where Yij is the achievement score for child i in school j, the γ terms are regression coeffi cients, 
u0j is a level-2 residual that allows the achievement means to differ across schools, u1j is a 
level-2 residual that allows the association between socioeconomic status and achievement 
to vary across schools, and rij is a level-1 residual that captures individual differences within 
a particular school. The level-2 residuals (i.e., the u terms) in the equation are essentially 
latent variables, the values of which differ across clusters (e.g., schools). Finally, it is worth 
noting that the multilevel model estimates a level-1 and a level-2 covariance matrix as opposed 
to the residuals themselves.

Multilevel imputation uses an iterative algorithm called the Gibbs sampler (Casella 
& George, 1992; Gelfand & Smith, 1990), which closely resembles data augmentation. The 
Gibbs sampler consists of a series of steps where the values at one step depend on the quanti-
ties from the previous step. In the context of multiple imputation, each iteration of the Gibbs 
sampler consists of three steps: (1) draw level-2 residuals from a distribution of plausible 
values, (2) draw new parameter values (i.e., regression coeffi cients, the level-2 covariance 
matrix, and the level-1 covariance matrix) from their respective posterior distributions, and 
(3) impute the missing values. I give a brief sketch of the imputation algorithm in the re-
mainder of this section; interested readers can fi nd additional details in Schafer (2001) and 
Schafer and Yucel (2002).

To begin, the Gibbs sampler draws a set of level-2 residuals from a normal distribution. 
The exact shape of this distribution depends on the fi lled-in data and the parameter values 
(i.e., the regression coeffi cients and the covariance matrices) from the previous iteration. The 
level-2 residuals are an important starting point because they defi ne the shape of the poste-
rior distributions in the second step and because they facilitate the computation of the 
multilevel model parameters. Next, the Gibbs sampler uses Monte Carlo simulation to draw 
new parameter values from their respective posterior distributions. Similar to the P-step of 
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data augmentation, the algorithm draws the level-1 and level-2 covariance matrices from an 
inverse Wishart distribution, and it uses a multivariate normal distribution to generate a new 
set of regression coeffi cients. The exact shape of these distributions depends on the level-2 
residuals from the fi rst step and on the imputed values from the preceding iteration. The fi nal 
step of the Gibbs sampler generates predicted scores for each case by substituting the ob-
served variables and the level-2 residuals into a multilevel regression model similar to that in 
Equation 9.5. Consistent with the I-step of data augmentation, the algorithm restores vari-
ability to the imputed data by augmenting each predicted score with a normally distributed 
residual term.

Implementing a multilevel imputation model involves additional nuances that are not 
relevant to standard data augmentation. For example, deciding what to include in the impu-
tation model becomes more complex. Following standard procedure, the imputation phase 
should include analysis model variables and auxiliary variables. However, you also need to 
decide which level-2 residual terms (i.e., random effects) to include in the imputation regres-
sion model. These residuals determine whether the association between two variables varies 
across clusters, so omitting an important residual term can bias the subsequent parameter 
estimates. Although it may seem like a good idea to include every possible residual term, 
doing so can lead to estimation problems and convergence failures. In addition to specifying 
which residual terms get included in the model, it is necessary to specify a covariance struc-
ture for the residuals. For example, a saturated covariance matrix allows the residuals for 
different variables to freely correlate, but it is also possible to specify a matrix that restricts 
the between-variable associations to zero. The fi rst option will better preserve the associa-
tions among the variables, but the complexity of the resulting imputation model can cause 
estimation problems. Schafer (2001) and Schafer and Yucel (2002) describe model specifi ca-
tion issues in more detail and give an analysis example that applies a multilevel imputation 
model.

9.8 MULTIPLE-IMPUTATION SOFTWARE OPTIONS

A number of software packages generate multiply imputed data sets, some of which are com-
mercially available, while others are freely available on the Internet. Software programs tend 
to change at a rapid pace, so a detailed description of these packages would quickly become 
out of date. Rather, this section provides a very general overview of multiple imputation com-
puting options, and I discuss a small handful of software options in more detail in Chapter 
11. A variety of resources are available for readers interested in the details of specifi c software 
programs (e.g., Allison, 2000; Honaker, King, & Blackwell, 2009; Horton & Lipsitz, 2001; 
Raghunathan, Solenberger, & Van Hoewyk, 2002; Royston, 2005; Schafer & Olsen, 1998; 
Yuan, 2000), and there are also useful websites that provide information about individual 
software packages (e.g., www.multiple-imputation.com).

Multiple-imputation software packages generally fall into one of three categories: pro-
grams that (1) generate multiply imputed data sets, (2) analyze multiply imputed data sets 
created by other programs, and (3) generate and analyze multiply imputed data sets. The 
programs that generate multiple imputations tend to offer the same set of features, some of 
which are described earlier in this chapter and in previous chapters (e.g., data transforma-
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tions, rounding options, ridge prior distributions). Although there is considerable overlap in 
features, software programs differ in the type and the number of algorithms that they imple-
ment. For example, the SAS MI procedure implements the data augmentation algorithm, 
whereas SPSS offers the sequential regression approach (also known as chained equations 
and fully conditional specifi cation) in its Missing Values add-on. SAS and SPSS are arguably 
the most popular statistical software packages in the social and the behavioral sciences, but 
a number of specialized imputation programs are also available (e.g., NORM, Amelia, MICE), 
as are open-source programs that offer a variety of user-written modules (e.g., the S-Plus 
and R statistical packages). Finally, software programs differ in their overall ease of use; some 
programs have point-and-click interfaces (e.g., the NORM program), but most are syntax 
driven (e.g., the SAS MI procedure and various R modules).

Regardless of which program you use to generate the multiple imputations, you have a 
number of options for analyzing the data and combining the resulting estimates. For ex-
ample, many popular software packages offer built-in routines for analyzing multiply im-
puted data sets (e.g., SAS, Mplus, HLM, to name just a few). Some of these programs require 
considerable programming to combine the m sets of estimates and standard errors, whereas 
others are so easy to use that the pooling process is virtually transparent to the user. Software 
programs also differ in the amount of summary information that they provide, so this is an 
additional consideration when choosing an analysis platform. For example, some programs 
output detailed diagnostic information (e.g., fraction of missing information, relative increase 
in variance, between- and within-imputation variance), whereas others simply report the 
pooled estimates and standard errors. In my experience, it is often convenient to use one 
program to generate the imputations and use a different program to analyze the data, but this 
choice is largely one of personal preference.

9.9 DATA ANALYSIS EXAMPLE 1

The fi rst analysis example uses multiple imputation to estimate a regression model with 
an interaction term.* The data for this analysis consist of scores from 480 employees on eight 
work-related variables: gender, age, job tenure, IQ, psychological well-being, job satisfaction, 
job performance, and turnover intentions. I generated these data to mimic the correlation 
structure of published research articles in the management and psychology literature (e.g., 
Wright & Bonett, 2007; Wright, Cropanzano, & Bonett, 2007). The data have three missing 
data patterns, each of which accounts for one-third of the sample. The fi rst pattern consists 
of cases with complete data, and the remaining two patterns have missing data on either 
well-being or job satisfaction. These patterns mimic a situation in which the data are missing 
by design (e.g., to reduce the cost of data collection).

The goal of the analysis is to determine whether gender moderates the association be-
tween psychological well-being and job performance. The multiple regression equation is as 
follows:

 JPi = β0 + β1(WBi) + β2(FEMALEi) + β3(WBi)(FEMALEi) + ε

*Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.
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Using maximum likelihood to estimate a model with an interaction term is straightforward 
and follows the same procedure as any multiple regression analysis (e.g., see the analysis 
example in Chapter 4). However, dealing with interactive effects is more complex in a mul-
tiple imputation analysis because the imputation phase must account for group differences 
in the mean and the covariance structure. With a nominal moderator variable such as gender, 
the best way to preserve an interactive effect is to impute the data separately for each group.

The Imputation Phase

To implement separate-group imputation, I sorted the data by gender and performed data 
augmentation separately for males and females. Note that the imputation model included 
every variable except gender, which was constant in each group. As I explained previously, 
separate-group imputation naturally preserves interaction effects because it allows the mean 
and the covariance structure to freely vary across subpopulations. The graphical diagnostics 
for males and females suggested fast convergence, so I specifi ed 100 burn-in and 100 be-
tween-imputation iterations (i.e., I saved the fi rst imputed data set after an initial burn-in 
period of 100 cycles and saved subsequent data sets at every 100th I-step thereafter). Con-
sistent with the analysis example from Chapter 8, I opted to use m = 50 imputations for the 
analysis phase.

The Analysis and Pooling Phases

The standard advice in the regression literature is to center continuous predictor variables 
at the grand mean (Aiken & West, 1991; Cohen et al., 2003). To do so, I merged the male 
and female fi les and computed the mean well-being score within each of the 50 imputed data 
sets. Next, I centered the psychological well-being scores by subtracting the appropriate mean 
from each score, and I then computed a product variable (i.e., interaction term) by multiply-
ing gender and the centered well-being scores. Finally, I estimated a multiple regression 
model with job performance scores as the outcome variable and gender, psychological well-
being, and the product term as predictors. The analysis phase produced 50 sets of  regression 
coeffi cients and standard errors that I subsequently pooled into a single set of results.

Researchers often begin a regression analysis with an omnibus F test, and the D1 statistic 
from Chapter 8 is ideally suited for this purpose. This analysis produced a test statistic of 
D1 = 40.34. Referencing this value to an F distribution with 3 numerator and 3802.40 de-
nominator degrees of freedom returned a probability value of p < .001. Consistent with the 
omnibus F test from an ordinary least squares regression analysis, a signifi cant test statistic 
indicates that at least one of the regression slopes is statistically different from zero.

Table 9.5 shows the pooled estimates and standard errors, along with the correspond-
ing maximum likelihood estimates from Chapter 4. Although the imputation and analysis 
models are not congenial (the imputation model is more complex than the analysis model), 
the two analysis procedure produced nearly identical parameter estimates and standard er-
rors. Turning to the individual parameter estimates note that, males and females do not differ 
with respect to their mean job performance ratings, β̂2 = –0.175, t = –1.66, p = .10, but the 
interaction term indicates that the association between well-being and performance is differ-
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ent for males and females, β̂3 = 0.355, t = 3.57, p < .001. Because the gender variable is 
coded such that female = 1 and male = 0, the sign of the interaction coeffi cient indicates 
that the relationship is stronger for females. Notice that the interpretation of the regression 
coeffi cients is identical to what it would have been had the data been complete. In addition, 
the computation of simple slopes is identical to that of a complete-data analysis. For exam-
ple, the regression equation for the subsample of males (the group coded 0) is ŶM = β̂0 + 
β̂1(WB), and the corresponding equation for females (the group coded 1) is ŶF = (β̂0 + β̂2) + 
(β̂1 + β̂3)(WB).

9.10 DATA ANALYSIS EXAMPLE 2

The second data analysis example illustrates the difference between scale-level imputation 
and duplicate-scale imputation.* The analyses use artifi cial data from a questionnaire on eat-
ing disorder risk. Briefl y, the data contain the responses from 400 college-aged women on 10 
questions from the Eating Attitudes Test (EAT; Garner, Olmsted, Bohr, & Garfi nkel, 1982), a 
widely used measure of eating disorder risk. The 10 questions measure two constructs, Drive 
for Thinness (e.g., “I avoid eating when I’m hungry”) and Food Preoccupation (e.g., “I fi nd 
myself preoccupied with food”), and mimic the two-factor structure proposed by Doninger, 
Enders, and Burnett (2005). The data set also contains an anxiety scale score, a variable that 

* Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.

TABLE 9.5. Regression Model Estimates from Data 
Analysis Example 1

Parameter Estimate SE t

Multiple imputation

β0 (intercept) 6.092 0.076 79.828
β1 (well-being) 0.332 0.065 5.107
β2  (gender) –0.173 0.105 –1.644
β3  (interaction) 0.355 0.100 3.566
σ̂2

e (Residual) 1.193 0.083 14.403
R2 0.240

Maximum likelihood estimation

β0 (intercept) 6.091 0.076 79.755
β1  (well-being) 0.337 0.071 4.723
β2  (gender) –0.167 0.105 –1.587
β3  (interaction) 0.362 0.106 3.426
σ̂2

e (residual) 1.234 0.084 14.650
R2 0.214    

Note. Predictors were centered at the maximum likelihood estimates of 
the mean.
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measures beliefs about Western standards of beauty (e.g., high scores indicate that respon-
dents internalize a thin ideal of beauty), and body mass index (BMI) values.

Variables in the EAT data set are missing for a variety of reasons. I simulated MCAR data 
by randomly deleting scores from the anxiety variable, the Western standards of beauty scale, 
and two of the EAT questions (EAT2 and EAT21). Expecting a relationship between body 
weight and missingness, I created MAR data on fi ve variables (EAT1, EAT10, EAT12, EAT18, 
and EAT24) by deleting the EAT scores f  or a subset of cases in both tails of the BMI distri-
bution. These same EAT questions were also missing for individuals with elevated anxiety 
scores. Finally, I introduced a small amount of MNAR data by deleting a number of the high 
body mass index scores (e.g., to mimic a situation where females with high BMI values refuse 
to be weighed). The deletion process typically produced a missing data rate of 5 to 10% on 
each variable.

The Imputation Phase

For the imputation phase, I generated three sets of m = 20 imputations by (1) imputing the 
individual questionnaire items (i.e., item-level imputation), (2) imputing the scale scores 
directly (i.e., scale-level imputation), and (3) imputing the scale scores using averages of the 
available items as auxiliary variables (i.e., duplicate-scale imputation). The number of vari-
ables in this data set is not nearly large enough to pose a problem for item-level imputation 
(the ideal procedure). Nevertheless, imputing the data using three approaches is useful for 
illustrating the differences that can result from using scale-level and duplicate-scale imputa-
tion. For each strategy, I used a single sequential data augmentation chain with 100 burn-in 
and 100 between-imputation iterations. The data augmentation algorithm converged very 
quickly and without problems, so there is no need to present the graphical diagnostics from 
the exploratory data augmentation chain.

The item-level imputation model included all 13 variables in the data set (i.e., the 10 
EAT questionnaire items, anxiety scores, Western standards of beauty scores, and body mass 
index values). For scale imputation, I began by computing scale scores by averaging the two 
sets of questionnaire items. The Drive for Thinness scale consists of seven items (EAT1, EAT2, 
EAT10, EAT11, EAT12, EAT14, and EAT24), and the Food Preoccupation scale has three items 
(EAT3, EAT18, and EAT21). Consequently, the Drive for Thinness scale score was an average of 
seven Likert items, and the Food Preoccupation scale was an average of three items. I re-
stricted the scale score computations to the cases with complete data, so respondents who 
were missing one or more of the item responses within a particular scale were also missing 
the scale score. This produced 291 cases with Drive for Thinness scores, 352 cases with Food 
Preoccupation scores, and 276 individuals with complete data on both scale scores. The 
subsequent scale-level imputation model had fi ve variables: the two EAT scale scores, anxiety 
scores, Western standards of beauty scores, and body mass index values.

The duplicate-scale imputation procedure was identical to that of scale imputation, but 
it also included two additional variables that I computed by averaging the available items 
within each scale. Again, the purpose of the duplicate scales is to recapture the important 
item-level information that scale imputation discards. An important nuance of the duplicate-
score approach is that the input data contain linear dependencies. Although the graphical 
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diagnostics looked ideal, the software package issued a warning message that the initial 
covariance matrix (i.e., the Bayesian estimate of " that generates the regressions for the fi rst 
I-step) was singular. I eliminated this problem by specifying a ridge prior distribution with a 
single degree of freedom. This effectively added one imaginary data record to the data aug-
mentation procedure.

The Analysis and Pooling Phases

To keep the analysis model simple, I estimated the mean vector and the covariance matrix for 
fi ve variables: the Drive for Thinness and Food Preoccupation scale scores, the anxiety scores, 
the Western standards of beauty scores, and the body mass index values. The analysis phase 
produced a mean vector and a covariance matrix for each of the 20 imputed data sets. I sub-
sequently used the pooling formulas from Chapter 8 to combine the estimates and the stan-
dard errors; Table 9.6 shows the results for three imputation approaches. Even when the 
ultimate goal is to analyze scale scores, imputing the individual questionnaire items and 
computing scale scores from the fi lled-in item responses should provide better results than 
imputing the scale scores directly. Consequently, the item-level imputation is the “gold stan-
dard” against which to compare the other methods. Focusing on the covariance matrix ele-
ments for the EAT scale scores, notice that scale-level imputation produced larger standard 
errors than item-level imputation. Also, notice that the standard error infl ation tends to be 
somewhat larger for the seven-item Drive for Thinness scale. This suggests that the power loss 
may increase as the number of scale items increases. In contrast, duplicate-scale imputation 
produced estimates and standard errors that are quite similar to those of item-level imputa-
tion. Scale-level imputation performed poorly because questionnaire items within a scale tend 
to have stronger correlations than items from different scales. Consequently, the imputation 
phase effectively discards the strongest predictors of the missing scale scores (i.e., the items 
within the scale) in favor of weaker correlates (i.e., items from different scales). Although it 
is not possible to draw fi rm conclusions from a single artifi cial data set, the standard error 
differences in Table 9.6 are consistent with what you might expect to see in real data sets.

9.11 SUMMARY

This chapter addressed a number of practical issues that arise during the imputation phase. 
The chapter began with a discussion of convergence problems. Convergence issues often oc-
cur because there is insuffi cient data to estimate certain parameters. This lack of data can 
result from including too many variables in the imputation phase or from a peculiar missing 
data pattern. In some situations, reducing the number of variables or eliminating the prob-
lematic variables can solve convergence problems. An alternate strategy is to specify a ridge 
prior distribution for the covariance matrix. Conceptually, the ridge prior adds a small num-
ber of imaginary data records (i.e., degrees of freedom) from a hypothetical population where 
the variables are uncorrelated. These additional data points can stabilize estimation and elimi-
nate convergence problems, but they do so at the cost of introducing a slight bias to the 
simulated parameter values (and thus the imputations). The biasing effect of the ridge prior 
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depends on the number of degrees of freedom that you assign to the prior, so it is generally 
a good idea to select a value that is as small as possible.

Like maximum likelihood estimation, the data augmentation algorithm in Chapter 7 
assumes multivariate normality, both at the I-step and at the P-step. However, methodologists 
suggest that normality-based imputation can work for a variety of different distribution types. 
Empirical studies suggest that normality violations may not pose a serious threat to the ac-
curacy of multiple imputation parameter estimates, particularly if the sample size is not too 
small and the missing data rate is not too large. One way to mitigate the impact of normality 
violations is to apply normalizing transformations to the data prior to performing data aug-
mentation. Variables can have different scales during the imputation and pooling phases, 
so you can impute a variable on a transformed metric (e.g., a logarithmic scale) and sub-
sequently analyze it on its original metric.

Nominal and ordinal variables are a special case of non-normal data that arises frequently 
in the behavioral and the social sciences. One consequence of applying an imputation model 
for normal data to discrete variables is that the resulting imputations will have decimals. The 

TABLE 9.6. Mean Vector and Covariance Matrix Estimates from Data Analysis 
Example 2

Variable 1 2 3 4 5

Item-level imputation

1: DFT 0.612 (0.044)
2: FP 0.349 (0.039) 0.759 (0.054)
3: ANX 1.227 (0.135) 1.254 (0.149)  9.078 (0.655)
4: WSB 0.549 (0.084) 0.462 (0.089)  0.997 (0.307) 3.667 (0.270)
5: BMI 0.846 (0.115) 0.664 (0.125)  1.164 (0.422) 1.109 (0.275)  7.343 (0.521)
Means 3.959 (0.039) 3.966 (0.044) 11.979 (0.152) 8.964 (0.099) 22.405 (0.136)

Scale-level imputation

1: DFT 0.599 (0.047)
2: FP 0.349 (0.042) 0.739 (0.521)
3: ANX 1.213 (0.151) 1.236 (0.151)  9.035 (0.663)
4: WSB 0.577 (0.083) 0.443 (0.093)  1.007 (0.306) 8.964 (0.097)
5: BMI 0.815 (0.126) 0.617 (0.129)  1.137 (0.418) 1.087 (0.274)  7.347 (0.521)
Means 3.957 (0.047) 3.971 (0.044) 11.979 (0.153) 8.964 (0.097) 22.401 (0.136)

Duplicate-scale imputation

1: DFT 0.616 (0.044)
2: FP 0.353 (0.039) 0.768 (0.054)
3: ANX 1.223 (0.135) 1.227 (0.149)  9.009 (0.649)
4: WSB 0.547 (0.082) 0.452 (0.089)  1.050 (0.308) 3.637 (0.266)
5: BMI 0.838 (0.115) 0.668 (0.125)  1.134 (0.419) 1.111 (0.278)  7.369 (0.524)
Means 3.959 (0.039) 3.967 (0.044) 11.965 (0.152) 8.968 (0.098) 22.402 (0.137)

Note. DFT = drive for thinness; FP = food preoccupation; ANX = anxiety; WSB = Western standards of beauty; 
BMI = body mass index. Values in parentheses are standard errors.
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traditional advice is to round imputed values to the nearest integer or to the nearest plausible 
value in order to produce imputations that are aesthetically consistent with the observed 
data. However, recent research suggests that rounding may not be necessary and can actually 
lead to biased parameter estimates. Aesthetics aside, there appear to be no negative conse-
quences associated with analyzing fractional imputations, so analyzing the data without 
rounding seems to be the safest strategy, at least for now. However, in some cases the analysis 
model requires rounding (e.g., a binary outcome in a logistic regression, a set of dummy 
variables), and the chapter described some rounding strategies for these situations.

Researchers in the behavioral and the social sciences are often interested in estimating 
interaction (i.e., moderation) effects where the magnitude of the association between two 
variables depends on a third variable. When using multiple imputation to treat missing data, 
it is important to specify an imputation model that preserves any interaction effects that are 
of interest in the subsequent analysis model. Failing to do so will attenuate the magnitude of 
these effects, even if the data are MCAR or MAR. The best strategy for preserving interaction 
effects depends largely on whether the interaction involves a continuous or a categorical 
moderator variable. If the analysis model includes an interaction effect between two quantita-
tive variables, the only way to preserve the interaction effect is to include a product variable 
in the imputation phase. The downside of this approach is that the imputation regression 
model generates fi lled-in values that are homoscedastic. This subtlety may have a relatively 
minor impact on many analyses, but in a number of situations the substantive goal is to de-
termine whether the covariance structure is the same across qualitatively different subpopu-
lations (e.g., measurement invariance analyses, multiple-group structural equation models). 
If the subgroups have different population variances, then the product term approach will 
generate imputations that mask these group differences. Consequently, when an inter active 
effect involves a categorical moderator variable, imputing the data separately for each sub-
group is often more accurate than including product terms in the imputation model.

Researchers in the behavioral and social sciences routinely use multiple-item question-
naires to measure complex constructs. Multiple imputation is advantageous for dealing with 
item-level missingness, but imputation can be challenging when a data set contains a large 
number of variables. Ideally, the imputation phase should include all of the individual ques-
tionnaire items in order to maximize the information that goes into creating the imputations. 
However, this may not be feasible when the number of questionnaire items is very large. 
When the analysis model involves scale scores, ignoring the item-level data and imputing the 
scale scores themselves can dramatically reduce the number of imputation model variables. 
This approach tends to lack power, but using the average of the available items as auxiliary 
variables (i.e., duplicate-scale imputation) can yield estimates and standard errors that are 
quite similar to those of an item-level imputation procedure. For situations that require item-
level data, I outlined a three-step approach for item-level imputation. The basic idea behind 
this procedure is to separately impute different subsets of questionnaire items, each time us-
ing scale scores to preserve the between-subset associations among the items.

The chapter concluded with a description of some alternate imputation algorithms. Al-
though the data augmentation algorithm in Chapter 7 is probably the most popular impu-
tation strategy, methodologists have developed a number of alternative imputation algorithms. 
The chapter described an EM-based imputation algorithm that is statistically equivalent to 
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data augmentation. This EMIS algorithm is appealing because it automatically yields inde-
pendent imputations and does so more quickly than data augmentation. The chapter also 
described two algorithms (the general location model and sequential regression) appropriate 
for data sets that contain a mixture of categorical and continuous variables. Of these two, the 
sequential regression approach appears particularly promising. Unlike data augmentation, 
which assumes a common distribution for every variable in the data set, sequential regres-
sion imputation fi lls in the data on a variable-by-variable basis, each time matching the im-
putation model to a variable’s distributional form. Preliminary simulation studies suggest 
that this procedure works well. Finally, I described an imputation algorithm for multilevel data 
structures. This algorithm is important because standard data augmentation fails to preserve 
any differences in the mean and the covariance structure that might exist across clusters.

The majority of this book is devoted to two so-called modern missing data techniques: 
maximum likelihood and multiple imputation. These methods use quite different approaches, 
but both assume MAR data. Although MAR-based methods are a substantial improvement 
over traditional methods that require the MCAR mechanism, they will produce bias when 
the data are missing not at random (MNAR). Chapter 10 outlines models that are designed 
specifi cally for MNAR data. As you will see, these MNAR methods are far from perfect and 
require assumptions that can be just as tenuous as MAR. In fact, when the model assump-
tions are violated, MNAR approaches can yield estimates that are worse than what you would 
have obtained from an MAR analysis. Nevertheless, MNAR models are useful for sensitivity 
analysis and are an important area of ongoing methodological research.
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